If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-16a-52=0
a = 1; b = -16; c = -52;
Δ = b2-4ac
Δ = -162-4·1·(-52)
Δ = 464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{464}=\sqrt{16*29}=\sqrt{16}*\sqrt{29}=4\sqrt{29}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{29}}{2*1}=\frac{16-4\sqrt{29}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{29}}{2*1}=\frac{16+4\sqrt{29}}{2} $
| 3(3t-4)-4t=-22 | | 5(9x+12)=15 | | x/4+12=-3 | | 3(2x+1)+7x=55 | | X=5,y=3 | | -4d-10=10 | | 2(4x-7)-5(3x-3)=x-4(2x+3) | | 8b=6b-14 | | 2t-8/3=5/6 | | 36=6x+2(-2x+13) | | -8.6x+83.5=-0.2x+7.9 | | x÷5=72 | | -13=m+9 | | 5x+2(3x+4)=-3 | | 3(x+1)=3.75 | | p+8p=-18 | | 8x-11=13+8 | | -4x6=3x+27 | | 4(2x-12)=5(x+12) | | 3(6+2y)-6=6y+12 | | 8(x-12)=5(x+15) | | -7k-k=-16 | | 700(35-7x)=450(15+7x) | | 7r-14/7=7 | | 25-8(3c-5)=3(6c-5)-4 | | 3(×+2)+x=4(x-1)+9 | | 16^67x=-4 | | -5x+15=4x-11 | | 3x-2(x+18.50)=104.50 | | 4/x+1+5=7 | | (X/2)+(x/6)=7 | | 3(4z-2)=2(z+27) |